Aligned and Non-Aligned Double JPEG Detection Using Convolutional Neural Networks
نویسندگان
چکیده
Due to the wide diffusion of JPEG coding standard, the image forensic community has devoted significant attention to the development of double JPEG (DJPEG) compression detectors through the years. The ability of detecting whether an image has been compressed twice provides paramount information toward image authenticity assessment. Given the trend recently gained by convolutional neural networks (CNN) in many computer vision tasks, in this paper we propose to use CNNs for aligned and non-aligned double JPEG compression detection. In particular, we explore the capability of CNNs to capture DJPEG artifacts directly from images. Results show that the proposed CNN-based detectors achieve good performance even with small size images (i.e., 64x64), outperforming state-of-the-art solutions, especially in the non-aligned case. Besides, good results are also achieved in the commonly-recognized challenging case in which the first quality factor is larger than the second one.
منابع مشابه
Double-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence
In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملDouble JPEG compression forensics based on a convolutional neural network
Double JPEG compression detection has received considerable attention in blind image forensics. However, only few techniques can provide automatic localization. To address this challenge, this paper proposes a double JPEG compression detection algorithm based on a convolutional neural network (CNN). The CNN is designed to classify histograms of discrete cosine transform (DCT) coefficients, whic...
متن کاملAutomated Image Forgery Detection through Classification of JPEG Ghosts
We present a method for automating the detection of the socalled JPEG ghosts. JPEG ghosts can be used for discriminating singleand double JPEG compression, which is a common cue for image manipulation detection. The JPEG ghost scheme is particularly well-suited for non-technical experts, but the manual search for such ghosts can be both tedious and error-prone. In this paper, we propose a metho...
متن کاملA multi-branch convolutional neural network for detecting double JPEG compression
Bin Li, Hu Luo, Haoxin Zhang, Shunquan Tan, Zhongzhou Ji Shenzhen Key Lab of Media Information Security, Shenzhen University, P. R. China ABSTRACT Detecting double JPEG compression is important to forensics analysis. A few methods were proposed based on convolutional neural networks (CNNs). These methods only accept inputs from pre-processed data, such as histogram features and/or decompress...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Visual Communication and Image Representation
دوره 49 شماره
صفحات -
تاریخ انتشار 2017